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ABSTRACT  
Accurate and efficient automated tumor segmentation in breast dynamic contrast-enhanced magnetic resonance imaging 
(DCE-MRI) is highly desirable for computer-aided tumor diagnosis. We propose a novel automatic segmentation 
framework which incorporates mean-shift smoothing, superpixel-wise classification, pixel-wise graph-cuts partitioning, 
and morphological refinement. A set of 15 breast DCE-MR images, obtained from the American College of Radiology 
Imaging Network (ACRIN) 6657 I-SPY trial, were manually segmented to generate tumor masks (as ground truth) and 
breast masks (as regions of interest). Four state-of-the-art segmentation approaches based on diverse models were also 
utilized for comparison. Based on five standard evaluation metrics for segmentation, the proposed framework 
consistently outperformed all other approaches. The performance of the proposed framework was: 1) 0.83 for Dice 
similarity coefficient, 2) 0.96 for pixel-wise accuracy, 3) 0.72 for VOC score, 4) 0.79 mm for mean absolute difference, 
and 5) 11.71 mm for maximum Hausdorff distance, which surpassed the second best method (i.e., adaptive geodesic 
transformation), a semi-automatic algorithm depending on precise initialization. Our results suggest promising potential 
applications of our segmentation framework in assisting analysis of breast carcinomas. 
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1. INTRODUCTION 
Breast cancer is the most commonly diagnosed form of cancer in women and is the second leading cause of cancer 
deaths in women in the United States1. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a 
commonly utilized breast imaging technique for diagnosing and staging breast cancer2-4. Proper delineation of the tumors 
is essential for accurate clinical assessment of tumor extent on DCE-MRI. For example, accurate tumor segmentation 
from longitudinal images of the same patient can efficiently describe the morphological changes of tumors over time, 
consequently providing assessment of pathologic response to neoadjuvant chemotherapy5, 6. However, manual tumor 
segmentation on a large volume of MR image data, coupled with the potential complicated structure and distribution of 
tumors, tends to be a very time-consuming and operator-dependent task. As a result, the automation of tumor 
segmentation has become highly desirable in medical imaging community.  

Agner et al.7 summarized the two prevalent segmentation models used in the medical imaging domain: pixel-wise 
models8-10 and shape-based models11-13. Recently, superpixel-based models14-16 in conjunction with pixel-wise intensity 
information and geometric shape information have been applied to tumor segmentation. Lucchi et al.14 used superpixel 
boundary appearance and graph-cuts to segment irregular-shaped cells on electron microscopy (EM) images, but did not 
consider pixel-wise label diversity present within each superpixel in DCE-MRI images. Wang and Yushkevich15 applied 
label fusion to transfer supervoxel-wise labels from a multi-atlas, followed by a voxel-wise refinement. This method 
utilized spatial information only during supervoxel generation, not considering the geometry, texture or spatial topology 
of the supervoxels. A recent algorithm by Ashraf et al.16 modeled the topology of superpixels as a multi-channel Markov 
random field (MRF) and converged the superpixel labeling through loopy belief propagation (LBP). This method, 
however, focused only on kinetic MRI features which, while reasonably robust, requires a sufficient number of post-
contrast images. 

Our study was motivated by the three superpixel-based methods above14-16, and by combining the strengths we 
contributed to addressing existing deficiencies within segmentation on breast DCE-MRI. An automatic segmentation 
framework was proposed, incorporating mean-shift smoothing, superpixel-wise classification, pixel-wise graph-cuts 
partitioning, and morphological refinement. This framework was validated by manually segmented ground truth and 
compared with four state-of-the-art methods on a set of 15 DCE-MR images. 
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2. METHODS 

 
Fig. 1. The proposed framework overview. (a) Input subtraction image with manually segmented tumor contour in red. (b) Image 
after mean-shift smoothing. (c) Superpixels from SLIC. (d) AdaBoost classification as pre-segmentation result. (e) Probability map of 
tumor Gaussian Mixture Model. (f) Graph-cuts partitioning result. (g) Final segmentation result after morphological refinement. (h) 
Overlap between final automatic segmentation and manual segmentation. Brown region indicates overlap (true positive); cyan region 
indicates over-segmentation (false positive); and yellow region indicates under-segmentation (false negative). 

2.1 Dataset 

Our study was conducted on a longitudinal breast DCE-MRI dataset from 15 women with biopsy-proven stage 2 or 3 
breast tumors obtained from the ACRIN 6657 I-SPY trial, a prospective clinical trial evaluating MR imaging for 
prediction of response to neoadjuvant chemotherapy. We only focused on the initial MRI examination of each patient 
which was performed within four weeks prior to the initiation of chemotherapy. T1-weighted 3D fat-suppressed 
gradient-echo sequences were done before (pre-contrast image) and after (post-contrast image) injection of a gadolinium-
based contrast agent. The scans were performed in the sagittal direction with 2 mm or less thick contiguous slices. The 
in-plane pixel spacing ranged from 0.7031 to 0.7813 mm, and each slice consisted of 256 by 256 pixels. The post-
contrast phase was acquired between 135 and 150 s. The proposed framework was directly performed on the subtraction 
images obtained by subtracting pixel-wise intensity values in the pre-contrast images from those in the post-contrast 
images. To avoid negative intensity values, we added a uniform offset of 500 to all subtraction images. 

2.2 Mean-shift smoothing 

A mean-shift smoothing filter17 was first applied to minimize the inherent artifacts introduced by MR imaging. Unlike 
traditional filters, a mean-shift filter is a discontinuity-preserving smoothing approach which adaptively decreases the 
amount of smoothing near edges and preserves local structure (Fig. 1b). We empirically set the spatial kernel bandwidth 
to 32 and intensity kernel bandwidth to 8 for our experiments.  

2.3 Superpixel generation  

After smoothing, a Simple Linear Iterative Cluster (SLIC) algorithm20 was used to aggregate nearby pixels into 
superpixels. Here we took two advantages of superpixels that 1) they converge to local optimum to adhere to local 
boundaries; and 2) they enrich discriminative and robust local features from geometric and textural information more 
than pixel-wise intensities. Compared to the normalized-cuts-based superpixel generation algorithm21 used by Ashraf et 
al.16 and the graph-merging-based algorithm22 used by Wang and Yushkevich15, Achanta et al.20 validated the prime 
advantages of SLIC are that it is a spatially localized version of k-means clustering which is faster, adheres to boundaries 
better, and generates superpixels with more identical sizes to be more suitable for scale-variant feature representation. As 
a follow-up work, Lucchi et al.14 used SLIC to generate superpixels on EM images and demonstrated the computational 
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advantage and promising segmentation results. Fig. 1c and the zoom-in show the superpixels generated from SLIC in our 
case, where we set the region size of superpixels to 8 and the spatial regularizer to 0.005 (i.e., a relatively small value) so 
as to ensure superpixels do not straddle image boundaries. 

2.4 Feature extraction and classification 

In order to robustly distinguish tumor regions from others, we extracted three types of features from each superpixel: 
intensity, geometric and textural features. As the vast majority of tumors enhance on breast DCE-MRI, it is 
straightforward to distinguish enhancing regions from non-enhancing regions via the use of intensity-based features. 
Statistical intensity features included the mean, standard deviation, skewness, kurtosis, range, and entropy of pixel 
intensities within each superpixel, the difference between means of pixel intensities inside and outside each superpixel, 
the means and standard deviations of gradients of the two orthogonal directions within each superpixel, and the intensity 
and gradient histograms of each superpixel. Since we computed histograms with 5 bins, 35 intensity features were 
extracted. 

Geometric features were applied in order to distinguish blood vessels as outliers from other tissues because the 
superpixels effectively delineated the narrow shape of vessels. Geometric features included: 1) the compactness as the 
ratio of each superpixel perimeter (in pixels) and area (in pixels), 2) the axis ratio as the ratio of lengths (in pixels) of 
minor and major axis of the ellipse that has the same normalized second central moments of each superpixel, 3) the 
eccentricity of that ellipse, 4) the irregularity as the ratio of perimeters (in pixels) of the area-equivalent circle and each 
superpixel, 5) the solidity as the ratio of each superpixel area (in pixels) and the convex hull area (in pixels), and 6) the 
extent as the ratio of each superpixel area (in pixels) and the bounding box area (in pixels). Since each feature was a 
scalar, 6 geometric features were extracted. 

Texture information was utilized to distinguish enhancing fibroglandular tissues (outlier) from other tissue types because 
they are less uniform in texture. We extracted a subset of Haralick features23 from the bounding box of each superpixel 
including the contrast, correlation, energy and homogeneity of each co-occurrence matrix with position offsets of 1, 5, 9 
(in pixels) and direction offsets of 0, 45, 90, 135 degrees separately. Therefore, there were 12 co-occurrence matrices 
being computed with the number of bins as 5 for 2D histogram counting (i.e. each co-occurrence matrix is 5 by 5), and, 
as a result, 48 textural features were extracted. In total, 89 features were computed in the proposed framework.  

Finally, an AdaBoost classifier24, combined with 256 binary decision trees pf maximal depth of 2, was trained to identify 
and select those superpixels containing tumor based on the aforementioned feature space (Fig. 1d). Note that in some 
case the training superpixels contained an admixture of pixels. As a result, we only selected those with more than 90%  
dominant labeling pixels as training superpixels. 

2.5 Graph-cuts partitioning 

With the pre-segmentation results, graph-cuts model25 was used to partition the pixel-wise undirected graph into two 
labels (i.e., tumor and background). The nodes of the graph correspond to all of the individual pixels inside superpixel-
based pre-segmentation while the edges correspond to a four-connectivity neighborhood system. Mathematically, an 
energy function taking the form in Eq. 1 is minimized: 

                                                             ;                                                            (1)                                                  

where fp, fq ϵ {tumor, background} are labeling variables, Ip, Iq are intensity values, P is the set of pixels, N is the 
neighborhood system, D( fp | Ip ), contributing to the data term, measures the penalty of label fp fitting to pixel p given 
observed data Ip, V( fp, fq | Ip , Iq ), contributing to the smoothness term, measures the penalty to assign different labels { fp, 
fq} to each pair of { p, q} in the neighborhood system given observed data { Ip, Iq}, and finally, λ is a trade-off factor 
controlling relative weight of the data term and the smoothness term. 

The data penalty D(fp) is the logarithm probability of pixel p assigned to label fp, which is the output of Gaussian Mixture 
Model (GMM). GMMs of the tumor and background labels were trained separately with 5 cluster centers. Pixels outside 
the superpixel-based pre-segmentation were assigned to background label with probability 1 and, therefore, were 
disregarded in the training process. The probability map of tumor GMM is shown in Fig. 1e. The smoothness penalty 
V( fp, fq | Ip , Iq ) is positively correlated with the difference between intensities Ip and Iq of adjacent pixel p and q as long 
as they are assigned to different labels: 
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                                                            ;                                                              (2) 
where σ is the standard deviation of image intensities inside pre-segmentation estimated from training images. 

Tumor segmentation (Fig. 1f) was accomplished by minimizing Eq. (1) through mincut-maxflow algorithm26, where λ 
was empirically set as 20.  

2.6 Morphological refinement 

Lastly, tiny, narrow and irregular segments were removed using reconstruction-based morphological opening and 
closing12 (with radius 2 in pixels) in order to reinforce the robustness of the proposed framework. If there is prior 
knowledge that desired tumors appear regular and concentrated, this step becomes optional for the sake of efficiency. Fig. 
1g displays an example of the final segmentation result. And Fig. 1h indicates the overlap between the automatic 
segmentation and ground truth. 

3. EXPERIMENTS 
3.1 Ground truth 

One 2D slice containing the maximal tumor area was selected from each DCE-MRI volume for experimental validation. 
Manually-segmented tumor masks (as ground truths) and breast masks (as regions of interest) of those slices were 
performed by a board certified breast imaging radiologist using the ITK-SNAP software27.  

3.2 Evaluation metrics 

The evaluation criteria of performance included area-based metrics: 1) Dice similarity coefficient (DSC)7; 2) pixel-wise 
accuracy14; 3) VOC score14, and boundary-based metrics: 4) mean absolute difference (MAD)7; and 5) maximum 
Hausdorff distance (MHD)7. Higher values of DSC, accuracy, and VOC score, and lower values (in mm) of MAD and 
MHD indicate better agreement between automatic segmentation and ground truth. 

3.3 Comparative methods 

For comparison, four state-of-the-art methods for medical image segmentation adapted to the specific task of tumor 
segmentation were also evaluated on our dataset, as summarized in Table 1. All supervised methods were trained and 
tested in a leave-one-woman-out cross-validation strategy.  

Table 1. The model and automation characteristics of the proposed framework and four comparative methods. 

Method Model Characteristic 
AdaFCM10 pixel-wise clustering + classification automatic, supervised 
Marker -controlled watershed12 morphological reconstruction + watershed automatic, unsupervised 
Adaptive geodesic transformation13 landmark-based distance map + thresholding semi-automatic, unsupervised 
Superpixel-based MRF16 superpixel + MRF + LBP automatic, supervised 
The proposed framework superpixel-based classification + graph-cuts automatic, supervised 

 

Adaptive fuzzy c-means (AdaFCM)10 is an adaptive strategy to select N-highest-intensity FCM28 clusters as tumor 
regions via a dichotomous tumor-vs-non-tumor classifier. In our experiments, FCM was implemented with 25 clusters. 
To allow for a more fair comparison of the methods, we used the same intensity, geometric and textural features, as well 
as the same AdaBoost classifier used in our proposed framework (instead of support vector machine classifier utilized in 
the initial description of the algorithm10)  in the implementation of AdaFCM used in this study.  

Marker-controlled watershed segmentation12 applies watershed transformation on the gradient image superimposed with 
markers, which are automatically selected from regional maxima after morphological reconstruction operation. In our 
implementation, a disk-shaped structuring element with radius 7 was utilized for reconstruction operation. 

Adaptive geodesic transformation13 is based on the geodesic distance map where intensity and gradient information are 
fused for geodesic transformation. It is adapted by the spatial variance of gradient weighted factor according to expert 
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landmarks. As a result, it is semi-automatic because of manually-initialized masks and landmarks, which are sensitive to 
the final results. In our experiments, the initial masks were manually selected while the expert landmarks were 
automated by the outcomes of AdaFCM10. In detail, gradient weighted factor was assigned 0 where pixels were labeled 
as tumor according to AdaFCM, and assigned 1 otherwise. The distance threshold is set to 30.9. 

Superpixel-based MRF16 is described in Sec 1. To allow for a fair comparison of the methods, we set the same region 
size of superpixels and the same number of clusters of GMMs as ours in the experiments. We also set the damping 
coefficient to 0.2. 

3.4 Results 

The proposed framework consistently outperformed the other four methods based on five selected metrics (Table 2). In 
comparison, the second best method, adaptive geodesic transformation, is a semi-automated algorithm in which results 
are dependent on  the precision of manually-initialized masks. Moreover, the proposed framework performed most 
robustly on diverse samples as evidenced by the relatively small standard deviations in all metrics. Fig. 2 shows 
examples of segmentation results produced by all five methods. When tumors appeared to be irregular and 
heterogeneous, marker-controlled watershed, AdaFCM, and adaptive geodesic transformation tended to under-segment 
the tumor, while the superpixel-based MRF tended to over-segment the tumor. The proposed framework captured both 
the overlap and boundaries adequately. 

Table 2. Statistical measures based on five metrics for performances of five tumor segmentation methods. Boldface indicates best 
performance and underline

Method 

 indicates second best performance among five. 

DSC7 Accuracy14 VOC14 MAD7 MHD7 
AdaFCM10 0.72±0.27 0.88±0.23 0.61±0.28 2.52±7.98 18.46±28.15 
Marker-controlled watershed12 0.65±0.24 0.82±0.30 0.52±0.22 4.51±12.63 16.01±34.11 
Adaptive geodesic transformation13 0.78±0.14 0.95±0.04 0.66±0.18 36.84±39.77 1.67±2.71 
Superpixel-based MRF16 0.69±0.17 0.88±0.10 0.56±0.19 2.64±3.02 19.02±12.97 
The proposed framework 0.83±0.12 0.96±0.03 0.72±0.16 0.79±1.43 11.71±12.44 

 

 
Fig. 2. Segmentation examples produced by five methods for three cases. The first column shows input subtraction images with 
ground truth contours in red. In the rest columns, brown, cyan, and yellow regions indicate overlap (true positive), over-segmentation 
(false positive), and under-segmentation (false negative) between automatic segmentation and ground truth, respectively. The Dice 
similarity coefficient (DSC) of each segmentation is also provided. 
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4. CONCLUSION 
An automatic tumor segmentation framework was developed and validated, which leveraged intensity, geometric and 
textural information of superpixels, and the topology of pixel-wise graph for tumor segmentation for use in breast DCE-
MRI. The proposed framework consistently outperformed four state-of-the-art segmentation methods in terms of 
superior capture of the overlap and boundaries of the tumors, demonstrating the potential as a means of improving 
clinical analysis and characterization of breast carcinomas. 
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