

Motivations

- Generative Adversarial Networks (GANs) evolve fast in the past 7 years for photorealistic generation. However, uncurated generations still suffer from artifacts that are easy to spot.
- We improve on StyleGAN2, by revisiting its **loss** and **architectures**.
- We propose a novel dual contrastive loss to replace traditional cross-entropy loss in the adversarial training.
- We revisit the **self-attention** modules in the generator architecture.
- We propose a novel **reference-attention** module in the discriminator architecture.

Dual contrastive loss

- **Batch-wise pick-one-out** classification instead of sample-wise binary classification.
- One real v.s. a batch of fakes.
- One fake v.s. a batch of reals.

Dual Contrastive Loss and Attention for GANs Ning Yu^{1,2} Guilin Liu³ Aysegul Dundar^{3,4}

Bryan Catanzaro³ Larry Davis¹ Mario Fritz⁵ Andrew Tao³ ¹University of Maryland ²Max Planck Institute for Informatics ³NVIDIA ⁴Bilkent University ⁵CISPA Helmholtz Center for Information Security https://github.com/ningyu1991/AttentionDualContrastGAN

Self-attention in the generator and reference-attention in the discriminator

- reference-attention module.

Dual Contrastive Loss Architecture diagram

StyleGAN2 [43] 9.84 36.55	19.33	11.02	StyleGAN2 [41]	1.08	40 77	~	active server as			
				1.00	48.77	StyleGAN2 [41]	9.84	36.55	19.33	11.02
+ DFN [37] 8.41 35.10	26.86	11.31	+ DFN [35]	4.20	177.60	+ self attn in D	10.49	42.41	17.22	11.06
+ VT [85] 9.18 34.70	16.85	10.64	+ VT [<mark>81</mark>]	7.39	240.09	+ ref attn in D	7.48	31.08	8.32	7.86
+ SAGAN [98] 9.35 34.83	17.94	10.65	+ SAGAN [94]	0.99	44.99	I				
+ SAN [103] 8.60 32.72	16.36	9.62	+ SAN [99]	1.08	48.43	Reference-attention in D improves FID				

All the self-attention modules in G improve FID SAN [1] improves the most

[1] Zhao, Hengshuang, Jiaya Jia, and Vladlen Koltun. "Exploring self-attention for image recognition." CVPR. 2020.

Combine all our contributions

Method	Loss	FFHQ	Bedroom	Church	Horse	CLEVR
BigGAN [5]	Adv	11.4	-	-	-	-
U-Net GAN [69]	Adv	7.48	17.6	11.7	20.2	33.3
StyleGAN2 [43]	Adv	4.86	4.01	4.54	3.91	9.62
StyleGAN2 w/ attn	Adv	5.13	<u>3.48</u>	4.38	<u>3.59</u>	8.96
StyleGAN2	Contr	3.98	3.86	<u>3.73</u>	3.70	<u>6.06</u>
StyleGAN2 w/ attn	Contr	<u>4.63</u>	3.31	3.39	2.97	5.05

Progressively improves FID by 17% - 48%

Feature augmentation for discriminator training.

Balance between generator and discriminator.

Self-attention and reference attention modules

SAN [1] does not increase complexity

FID = 3.98FFHQ

FID = 3.31Bedroom

Self-attention in D does not

