



<sup>1</sup>Virginia Tech; <sup>2</sup>Netflix Eyeline Studios; Correspondance: <u>chensi@vt.edu</u>

## Background

LLMs often produce seemingly coherent yet unfounded outputs ('hallucinations'), posing risks in high-stake scenarios such as healthcare and finance. This has motivated research on **fact tracing**, aiming to identify the training data that serves as the knowledge source for LLMs' generation.

#### **Prior fact tracing formulation**

• Seeking to find the most influential data points that lead an LM to generate a particular fact.

#### What's the problem?

- It's hard to collect the ground truth data, which makes it impossible to accurately evaluate a method's performance.
- Prior works label the training data that supports the generation of a fact as ground truth, which results in a mismatch between formulation and evaluation setup.

# Method

We propose FastTrack, a novel two-stage pipeline and can be easily adapted without the need to train a model (D-iii).

#### **Stage** (1) **Semantic Clustering**

• FastTrack leverages a recursive clustering scheme to mine the semantic structure in the training corpus, which enables a coarse matching for a given query.

#### **Stage 2 LLM as a Sample-Level Tracer**

- FastTrack first retrieves relevant clusters for a given query by applying fuzzy match to identify those clusters that share similar keywords as the query.
- With the retrieved clusters, FastTrack leverage the power of LLMs classifying each candidate training example into two categories based on its 'supportiveness'. We devised the prompting strategy to evaluate a batch of training data in a single inference run to further enhance efficiency.



3

We propose a new formulation of fact tracing that focuses on *finding* training data that support a fact generated by an LLM.

We summarize the **desiderata** for fact-tracing methods as follows:

- **D-i. Effective and Accurate**. For a target query, fact-tracing methods need to identify all supporting facts in the training corpus and achieve both high precision and recall simultaneously.
- **D-ii. Computationally Tractable**. Fact-tracing methods need to be scalable with both the number of queries and the number of training samples to be examined.
- **D-iii. Practically Robust**. Fact-tracing prioritizes general-purposed, principled methods that are plausible for deployment and transferable between use cases.

Current methods all miss one or more of these principles:

- Gradient-similarity-based methods are computationally demanding (D-ii); and considerably susceptible to noises, results in unstable performance even with extensive hyper-parameter tuning (D-i, D-iii).
- Lexical-similarity-based methods rely on the assumption that queries and samples with supporting facts being similarly phrased, which is not necessarily true (D-i, D-iii).

All existing methods rely on **similarity** measures. However, similarity in these pre-defined spaces may easily fail to capture the nuance of supportiveness effectively.



Takeaway (1)

2

# Some Failure Cases of Existing Methods

#### When does BM25 fail?

 BM25 operates based on token overlap, and retrieves examples with high lexical similarity to the query, regardless of their factual consistency.

> Query: Alloy Digital's network has a monthly reach of more than 100 million unique visitors. **BM25 Retrieved:**

Rank-1: Defy Media: According to comScore, Alloy Digital's network reaches over 221 million unique visitors each month, including more than half of the aged 12-34 internet users. Rank-2: According to comScore, Alloy media platforms reach over 95 million unique visitors each month, including over half of the age 12-34 internet users. Rank-3: The franchise has sold more than 26 million units worldwide with the release of 2018 's installment.

 BM25's performance can drop a large margin under slight rephrasing of the text.

|        | Top-1     |        | Тор-10    |        | Тор-25    |        |
|--------|-----------|--------|-----------|--------|-----------|--------|
|        | Precision | Recall | Precision | Recall | Precision | Recall |
| Before | 0.83      | 0.06   | 0.66      | 0.36   | 0.49      | 0.52   |
| After  | 0.62      | 0.05   | 0.48      | 0.28   | 0.38      | 0.42   |

#### When do TDA methods fail?

**FastTrack** delivers impressive tracing performance, yielding both high precision and recall, improving the F1 score by >80% compared to the best-performing baseline BM25. (D-i)

|               | FTRACE-TREx |           |        | VITATRACE |           |        |  |
|---------------|-------------|-----------|--------|-----------|-----------|--------|--|
|               | <b>F1</b>   | Precision | Recall | <b>F1</b> | Precision | Recall |  |
| TRACIN        | 0.02        | 0.19      | 0.01   | -         | -         | -      |  |
| Embed         | 0.01        | 0.08      | 0.01   | 0.48      | 0.54      | 0.46   |  |
| <b>BM25</b>   | 0.40        | 0.49      | 0.52   | 0.55      | 0.59      | 0.53   |  |
| Ours          | 0.72        | 0.81      | 0.69   | 0.91      | 0.88      | 0.98   |  |
| <b>Ours</b> * | 0.86        | 0.92      | 0.83   | 1.00      | 1.00      | 1.00   |  |

|               | VITATRACE-10k |           |        | VITATRACE-100k |           |        |
|---------------|---------------|-----------|--------|----------------|-----------|--------|
|               | <b>F1</b>     | Precision | Recall | <b>F1</b>      | Precision | Recall |
| <b>BM25</b>   | 0.55          | 0.59      | 0.53   | 0.53           | 0.56      | 0.50   |
| Ours          | 0.91          | 0.88      | 0.98   | 0.88           | 0.85      | 0.92   |
| <b>Ours</b> * | 1.00          | 1.00      | 1.00   | 0.95           | 0.95      | 0.95   |

#### prompt for supportiveness evaluation $Inst_{eval}$ **Output:** Retrieved Samples $D_{sel}$ /\* Stage 1: Semantic Clustering (Offline) \*/ 1 $D_{emb} \leftarrow SentenceTransformer(D)$ Leaf Clusters $C = \{c_0, c_1, \ldots, c_{n-1}\} \leftarrow$ Hierarchical clustering on $D_{emb}$ using k-Means (k=10) 2 Semantic Labels $J = \{j_0, j_1, \dots, j_{n-1}\} \leftarrow$ $LLM(\{c_0, c_1, ..., c_{n-1}\}, Inst_{key})$ /\* Stage 2: Tracing (Online) \*/ 3 for each query $q \in Q$ do $D_q \leftarrow \{\}$ $C_{\text{sel}} \leftarrow \text{fuzzymatch}(q, J, C)$ $Batches \leftarrow$ partition $C_{sel}$ into batches of size b for each batch $B \in Batches$ do $S_B \leftarrow \text{LLM}(q, B, Inst_{\text{eval}})$ $D_q \leftarrow D_q \cup \{z \mid z \in B, s_i = 1\}$ end 10 $D_{\text{sel}} \leftarrow D_{\text{sel}} \cup D_q$ 12 **end**

| Performance vs. Computation |   |  |  |  |  |              |               |  |  |
|-----------------------------|---|--|--|--|--|--------------|---------------|--|--|
| 0.7 -                       | * |  |  |  |  | <del>×</del> | TracIn        |  |  |
| 0.6 -                       |   |  |  |  |  | - <u>×</u>   | Embed<br>BM25 |  |  |
| 0.5 -                       |   |  |  |  |  | *            | Ours          |  |  |
|                             |   |  |  |  |  |              |               |  |  |

### Takeaway (2)

**FastTrack** not only excels in fact-tracing performance but also offers the optimal balance between computational speed and effectiveness. It outperforms competitors significantly, running 33 times faster than TRACIN in evaluating 100 queries. (D-ii)

- TRACIN's performance is highly dependent on having the exact same construct of question-answer pairs.
- TRACIN tends to retrieve sentence with the same masked token.
- EMBED cannot detect fact-support correspondence between samples and cannot distinguish different levels of sample similarities.

Query: Comptroller of Maryland is a legal term in \_\_\_\_\_ (Maryland)

#### **TRACIN Retrieved:**

**Rank-1**: The \_\_\_\_\_ Comptroller election of 2010, was held on November 2, 2010. (Maryland) Rank-2: It is found in Alabama, Florida, Louisiana, Mississippi, North Carolina and Virginia. (Maryland)

**EMBED Retrieved:** Rank-1: the Mayor of \_\_\_\_\_. (Moscow) Rank-2: Embassy in Cyprus is located in \_\_\_\_\_. (Nicosia) Rank-3: He served on the \_\_\_\_\_ of Edmonton. (town council)



## **Connect With**

