HIVE: Harnessing Human Feedback for Instructional Visual Editing
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— Background —— Contribution — Quantitative Results
[ Instructional image editing has emerged as one of the 0 To tackle the technical challenge of fine-tuning diffusion models using human feedback, we 0ss
most promising application scenarios for content introduce two scalable fine-tuning approaches, which are computationally efficient and offer 2 020
generation. We hypothesize that instructional image similar costs compared with supervised fine-tuning. Moreover, we empirically show that human . Y
editing could benefit from human feedback, as feedback is an essential component to boost the performance of instructional image editing 2 o - // oY
their outputs may not adhere to the correct instructions models. a S — y j // S
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and preferences of users. 0 We create a new dataset for HIVE including three subdatasets: a new 1.1M training dataset, a o = ol IP2P-Official vs IP2P-Ours IP2P-Ours vs HIVE
3.6K reward dataset for rewards learning, and a 1K evaluation dataset. N S e ..
" T — [0 We introduce cycle consistency augmentation based on the inversion of editing instruction. Our 1 . | CLt':T:""'mage ID"eCt“”‘ S:;'?”‘ZVP_ (P2Pyand 0 Userstudy of o bt
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NS T smmer - dataset has been enriched with one pair of data for bi-directional editing. HIVE. Illustration of tradeoffs between consistency InstructPix2Pix(IP2P) and HIVE. HIVE
‘ £ with the input image and with the edit. HIVE obtains 25% more votes.
| achieves higher similarity on both metrics.

Proposed Methods — Qualitative

0 Step 1: instructional supervised 0 Step 2: collect comparison data, and train a 0 Step 3: fine-tune diffusion model with learned
training reward model rewards
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