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A. Backgroud

A-1. Text-To-Image Generative Model 
Background

•Text-To-Image Generative Model (T2I Model)

1

Input Prompt Text Encoder Diffusion Model Output Image

Text-To-Image Generative Model

Embedding

T2I models can be applied in 

many scenarios:
Safety 
Filters• Art and Design

• Promotional Media

• Data augmentation

They can also be abused to 

produce NSFW content:

• Nudity Content

• Violence Content

• Other Distressing Material

A-2. Safety Filter and Jailbreak Attack

Background

1

The cat’s eyes gleamed as it spotted a bird 
outside the window.*

Input Prompt

Jailbreak Prompt
The small, fluffy cat was curled up on a 

cushion in the sunny window.

Red-teaming

T2I Model ⨁ Safety Filter

sa
m

e

Safety filter blocks 
the generation

•Safety Filters and Jailbreak Attack
- Safety filters are primarily designed to prevent the generation of images containing sensitive content. If someone 

wants to abuse a T2I model for NSFW generations, these filters can detect the attempt and block the generation 
process.

*Same as previous work, we use dogs and cats as part of the external safety filters in the illustrative figure to avoid illegitimate or violent content that might make 
the audience uncomfortable, i.e., cats and dogs are assumed to be unsafe.

T2I Model ⨁ Safety Filter

- However, safety filters are not foolproof. They are still vulnerable jailbreak attacks, where carefully crafted 
prompts are used to bypass the filters and generate inappropriate or unsafe content.

A-3. Relate Work

A grponypui man riding a 
bicycle

A man without clothes is 
riding a bike

Token-Level Prompt-Level
Sensitive Prompt: A naked man riding a bicycle

• Token-Level: High Perplexity, Low Stealthiness
• Prompt-Level: Fix Pattern, Low Success Rate

B. Methodology

JailFuzzer - A novel prompt-level jailbreak method
powered by fuzzing and LLM agents

Figure R1:  Overall pipeline of JailFuzzer. Each step box contains the components utilized in that specific step, with the 
corresponding symbols and their meanings detailed in the dashed box at the bottom.  
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C. Evaluation

C-1. EffectivenessTABLE 1: Performance of JailFuzzer in bypassing different safety filters. Consistent with the approach of SneakyPrompt [57], we use
FID to assess the semantic similarity of our generation. A higher bypass rate and a lower FID score indicate a better attack. As a reference,
FID(target-sd1.4, real) = 133.20, FID(non-target-sd1.4, real) = 299.06.

Agent Brain Target
Safety Filter One-time Jailbreak Prompt Re-use Jailbreak Prompt

Type Method Bypass Rate (→)
FID Score (↑) Queries (↑)

Bypass Rate (→)
FID Score (↑)

adv. vs. target adv. vs. real mean std adv. vs. target adv. vs. real

Text-Image text-image-classifier 100.00% 113.82 132.55 7.04 9.27 50.45% 158.35 177.57

Text
text-match 100.00% 122.33 146.27 2.94 3.11 100.00% 124.16 151.31

text-classifier 88.30% 104.76 139.43 15.45 14.10 100.00% 100.96 130.43
SD1.4

Image
image-classifier 100.00% 112.63 153.95 6.89 7.26 54.35% 128.82 175.72

image-clip-classifier 100.00% 121.89 155.75 8.40 10.87 51.49% 148.08 197.45
dog/cat-image-classifier 97.30% 172.01 (dog/cat) – 10.09 14.96 51.38% 194.22 (dog/cat) –

Text
text-match 100.00% 169.29 228.43 4.19 9.90 100.00% 170.04 224.33

LLaVA text-classifier 87.77% 155.21 217.79 11.09 7.45 100.00% 161.99 229.75
and SDXL

Image
image-classifier 100.00% 184.23 219.43 2.68 3.51 60.97% 196.15 218.01

Vicuna image-clip-classifier 100.00% 183.74 232.54 3.56 7.70 67.30% 195.06 231.25
dog/cat-image-classifier 95.95% 185.11 (dog/cat) – 6.14 10.17 52.70% 194.32 (dog/cat) –

Text
text-match 100.00% 160.11 217.70 5.71 7.50 100.00% 159.38 225.18

text-classifier 89.89% 158.93 219.31 11.85 8.87 100.00% 161.27 201.30
SD3

Image
image-classifier 100.00% 180.51 199.14 2.75 8.08 55.65% 191.46 218.75

image-clip-classifier 100.00% 171.85 192.26 3.20 2.73 62.86% 189.01 228.32
dog/cat-image-classifier 94.15% 181.90 (dog/cat) – 6.38 10.11 57.26% 191.35 (dog/cat) –

DALL·E 3 - - 81.93% 294.07 309.08 15.26 18.81 67.65% 267.19 284.50

Text-Image text-image-classifier 100.00% 116.15 132.15 6.98 9.15 51.64% 157.31 175.01

Text
text-match 100.00% 121.88 149.35 2.01 3.17 100.00% 125.25 151.91

text-classifier 82.45% 106.12 141.71 14.65 14.07 100.00% 106.71 129.05
SD1.4

Image
image-classifier 100.00% 111.31 157.42 7.75 7.06 53.62% 130.15 178.04

image-clip-classifier 100.00% 121.02 158.24 8.01 10.81 53.73% 151.01 185.31
dog/cat-image-classifier 97.30% 171.29 (dog/cat) – 9.85 15.11 58.10 % 189.01 (dog/cat) –

Text
text-match 100.00% 161.70 227.57 4.16 9.67 100.00% 164.25 219.15

ShareGPT4V text-classifier 88.82% 158.06 215.70 12.10 9.13 100.00% 156.71 191.13
and SDXL

Image
image-classifier 100.00% 175.51 201.12 2.14 3.55 58.53% 198.85 211.77

Vicuna image-clip-classifier 100.00% 176.76 189.83 3.95 7.90 69.23% 185.06 226.25
dog/cat-image-classifier 96.11% 187.65 (dog/cat) – 6.55 10.83 59.72% 195.41 (dog/cat) –

Text
text-match 100.00% 164.35 220.03 3.31 7.85 100.00% 165.18 219.43

text-classifier 87.77% 153.45 219.21 10.71 9.02 100.00% 158.74 215.32
SD3

Image
image-classifier 100.00% 180.51 198.43 2.81 7.96 51.74% 193.84 219.63

image-clip-classifier 100.00% 175.62 229.10 3.71 3.01 67.91% 190.15 226.71
dog/cat-image-classifier 94.15% 184.91 (dog/cat) – 6.19 10.39 60.19% 194.81 (dog/cat) –

DALL·E 3 - - 79.50% 299.31 305.45 14.49 18.75 69.70% 296.15 299.35

to test safety filters, excluding the dog-cat-image-classifier-
based safety filter. The Dog/Cat-100 dataset includes 100
prompts describing the scenario with dogs or cats. The com-
bination of this dataset with the dog-cat-image-classifier-
based safety filter allows testing the effectiveness of Jail-

Fuzzer while avoiding the generation of NSFW content. In
addition, to minimize cost, we used the first half of the
NSFW-200 as the dataset for testing DALL·E 3.

Evaluation Metrics We use four metrics including one-time
bypass rate, re-use bypass rate, FID [24], and query number:

• One-Time Bypass Rate: It is the percentage of jailbreak
prompts that bypass safety filters out of the total num-
ber of such prompts. Following Sneakyprompt [57],
an jailbreak prompt pa is successful if the model

generates a corresponding image and the CLIPScore
L(pt,M(pj)) exceeds ω.

• Re-Use Bypass Rate: It measures the reusability of
jailbreak prompts. To evaluate this, we set the target
T2I model’s seed to a random value and test the bypass
rate of successful jailbreak prompts.

• FID Score: It evaluates image semantic similarity, a
higher FID score indicates a greater difference between
the distributions of two image collections. We compare
the distribution of the generated image collection with
seven ground-truth datasets: 1) Three Target datasets:
1000 images each generated by SD1.4, SDXL, and SD3
(without the safety filter) using random seeds based on
the NSFW-200 dataset. 2) Real dataset: 4000 genuine

sensitive images from the NSFW image dataset [28]. 3)
Three dog-cat datasets: 1000 images each generated by
SD1.4, SDXL, and SD3 (without the safety filter) using
random seeds based on Dog/Cat-100. When the target
model is Stable Diffusion, the target FID is computed
from the target dataset and the dog/cat dataset of the
corresponding model version. When the target model is
DALLE 3, the target FID is computed from the SDXL
target dataset.

• Query Number: We measure the number of queries to
T2I models used to find a jailbreak prompt.

Hyperparameters. JailFuzzer involves five hyperparame-
ters:

• Threshold ω for CLIPScore: Used to determine seman-
tic similarity, set to 0.26, as in Sneakyprompt [57].

• Maximum number of queries per loop ! = (4, 10, 10,
...), with a maximum of 6 loops.

• Number of prompts for the mutation agent (km) and the
oracle agent (kc): To prevent the confusion that can
arise from excessively long contexts and to preserve
validity, we set km = 5 and kc = 10.

6. Evaluation

We answer the following Research Questions (RQs).
• [RQ1] How effective is JailFuzzer at bypassing safety

mechanisms?
• [RQ2] How does JailFuzzer perform compared with

different baselines?
• [RQ3] How do different hyperparameters affect the

performance of JailFuzzer?

6.1. RQ1: Effectiveness at Bypassing Safety Mech-
anisms

Effectiveness on Stable Diffusion. As shown in Table 1,
JailFuzzer successfully bypasses all safety filters in general,
generating images that retain semantic similarity to the
original prompts with minimal queries. It accomplishes a
100% one-time bypass success rate, necessitating an average
of only 4.6 queries and achieving a commendable FID
score across various filters, with the exception of the text-
classifier-based and dog/cat-image-classifier-based filters.
The methodology ensures a 100% reuse bypass rate against
text-based safety filters due to their positioning prior to the
diffusion model’s application, whereas this rate declines to
approximately 50% for text-image-based and image-based
filters. This reduction is attributed to the interference of
a random seed with the original mapping relationship, al-
lowing certain jailbreak prompts to conform to the safety
filter’s decision boundary. For the dog/cat-image-classifier-
based filters, the bypass rate decreases to about 95% with an
average query count of 6.60. Remarkably, even against more
conservative text-classifier-based filters, JailFuzzer secures
an over 82.5% one-time bypass rate, with queries averaging
at 12.6.

TABLE 2: Performance of JailFuzzer in bypassing non-filter-based
safety mechanisms.

Safety Mechanisms Bypass rate FID score Queries
target real

  UCE 94% 142.65 159.90 5.54
  POSI 81% 161.76 185.31 12.55

  SafeGen 82% 164.72 188.33 16.72

TABLE 3: of JailFuzzer in bypassing jailbreak de-
fenses.

Jailbreak Defense Bypass rate FID score Queries
target real

None 100% 113.82 132.55 7.04
PPL [25] 100% 115.17 143.75 7.76

SmoothLLM-Insert [45] 92% 142.36 168.86 13.72
SmoothLLM-Swap [45] 88% 133.84 162.86 12.50
SmoothLLM-Patch [45] 94% 131.29 157.37 11.57

Effectiveness on DALL·E 3. Table 1 shows that JailFuzzer

has 81.93% and 79.50% one-time bypass rates for closed-
box DALL·E 3 with an average of 13.38 queries. DALL·E
3, as a commercially available T2I model, benefits from
OpenAI’s safety efforts, making it more robust than Stable
Diffusion. Additionally, the images generated by DALL·E
3 are in a special style, which differs significantly from the
dataset used to evaluate semantic similarity. As a result, the
FID is higher but still lower than that of existing methods
(detailed in Section 6.2).

Effectiveness of Different VLM Models as Brain. We
further study the impact of using different VLM models as
the mutation agent’s brain. As shown in Table 1, comparing
LLaVA and ShareGPT4V, we observe that ShareGPT4V-1.5
generally achieves higher attack performance than LLaVA-
1.5. However, we also find that JailFuzzer can achieve
strong attack performance against all cases for both LLaVA
and ShareGPT4V. These observations indicate that the at-
tacker can simply choose any VLM model as the brain of
the mutation agent.

Effectiveness of Bypassing Non-Filter-Based Safety Me-
chanisms. Beyond safety filters, an alternative class of
defense mechanisms seeks to suppress NSFW content by
eliminating sensitive concepts from the generative process.
These mechanisms typically operate by transforming text
inputs (e.g., POSI [55]) or modifying the internal parameters
of the T2I model (e.g., UCE [21], SafeGen [32]). To evaluate
the effectiveness of JailFuzzer against such non-filter-based
defenses, we systematically evaluate its performance on
UCE, POSI, and SafeGen. As shown in Table 2, JailFuzzer

achieves high bypass rates across all three mechanisms,
successfully circumventing UCE in 94% of cases, POSI in
81%, and SafeGen in 82%. Moreover, JailFuzzer is highly
query-efficient and maintains high image quality. Notably,
all three defenses enable the T2I model to generate semanti-
cally similar yet SFW images in response to NSFW prompts,
rather than outright rejecting them. This necessitates a minor
adaptation of JailFuzzer to effectively bypass such defenses.
Specifically, during Step 3 of JailFuzzer (details in Sec-

sensitive images from the NSFW image dataset [28]. 3)
Three dog-cat datasets: 1000 images each generated by
SD1.4, SDXL, and SD3 (without the safety filter) using
random seeds based on Dog/Cat-100. When the target
model is Stable Diffusion, the target FID is computed
from the target dataset and the dog/cat dataset of the
corresponding model version. When the target model is
DALLE 3, the target FID is computed from the SDXL
target dataset.

• Query Number: We measure the number of queries to
T2I models used to find a jailbreak prompt.

Hyperparameters. JailFuzzer involves five hyperparame-
ters:

• Threshold ω for CLIPScore: Used to determine seman-
tic similarity, set to 0.26, as in Sneakyprompt [57].

• Maximum number of queries per loop ! = (4, 10, 10,
...), with a maximum of 6 loops.

• Number of prompts for the mutation agent (km) and the
oracle agent (kc): To prevent the confusion that can
arise from excessively long contexts and to preserve
validity, we set km = 5 and kc = 10.

6. Evaluation

We answer the following Research Questions (RQs).
• [RQ1] How effective is JailFuzzer at bypassing safety

mechanisms?
• [RQ2] How does JailFuzzer perform compared with

different baselines?
• [RQ3] How do different hyperparameters affect the

performance of JailFuzzer?

6.1. RQ1: Effectiveness at Bypassing Safety Mech-
anisms

Effectiveness on Stable Diffusion. As shown in Table 1,
JailFuzzer successfully bypasses all safety filters in general,
generating images that retain semantic similarity to the
original prompts with minimal queries. It accomplishes a
100% one-time bypass success rate, necessitating an average
of only 4.6 queries and achieving a commendable FID
score across various filters, with the exception of the text-
classifier-based and dog/cat-image-classifier-based filters.
The methodology ensures a 100% reuse bypass rate against
text-based safety filters due to their positioning prior to the
diffusion model’s application, whereas this rate declines to
approximately 50% for text-image-based and image-based
filters. This reduction is attributed to the interference of
a random seed with the original mapping relationship, al-
lowing certain jailbreak prompts to conform to the safety
filter’s decision boundary. For the dog/cat-image-classifier-
based filters, the bypass rate decreases to about 95% with an
average query count of 6.60. Remarkably, even against more
conservative text-classifier-based filters, JailFuzzer secures
an over 82.5% one-time bypass rate, with queries averaging
at 12.6.

TABLE 2: Performance of JailFuzzer in bypassing non-filter-based
safety mechanisms.

Safety Mechanisms Bypass rate FID score Queries
target real

UCE [21] 94% 142.65 159.90 5.54
POSI [55] 81% 161.76 185.31 12.55

SafeGen [32] 82% 164.72 188.33 16.72

TABLE 3: Performance of JailFuzzer in bypassing jailbreak de-
fenses.

Jailbreak Defense Bypass rate FID score Queries
target real

100% 113.82 132.55 7.04
100% 115.17 143.75 7.76
92% 142.36 168.86 13.72
88% 133.84 162.86 12.50

None
PPL 

SmoothLLM-Insert 
SmoothLLM-Swap 
SmoothLLM-Patch 94% 131.29 157.37 11.57

Effectiveness on DALL·E 3. Table 1 shows that JailFuzzer

has 81.93% and 79.50% one-time bypass rates for closed-
box DALL·E 3 with an average of 13.38 queries. DALL·E
3, as a commercially available T2I model, benefits from
OpenAI’s safety efforts, making it more robust than Stable
Diffusion. Additionally, the images generated by DALL·E
3 are in a special style, which differs significantly from the
dataset used to evaluate semantic similarity. As a result, the
FID is higher but still lower than that of existing methods
(detailed in Section 6.2).

Effectiveness of Different VLM Models as Brain. We
further study the impact of using different VLM models as
the mutation agent’s brain. As shown in Table 1, comparing
LLaVA and ShareGPT4V, we observe that ShareGPT4V-1.5
generally achieves higher attack performance than LLaVA-
1.5. However, we also find that JailFuzzer can achieve
strong attack performance against all cases for both LLaVA
and ShareGPT4V. These observations indicate that the at-
tacker can simply choose any VLM model as the brain of
the mutation agent.

Effectiveness of Bypassing Non-Filter-Based Safety Me-
chanisms. Beyond safety filters, an alternative class of
defense mechanisms seeks to suppress NSFW content by
eliminating sensitive concepts from the generative process.
These mechanisms typically operate by transforming text
inputs (e.g., POSI [55]) or modifying the internal parameters
of the T2I model (e.g., UCE [21], SafeGen [32]). To evaluate
the effectiveness of JailFuzzer against such non-filter-based
defenses, we systematically evaluate its performance on
UCE, POSI, and SafeGen. As shown in Table 2, JailFuzzer

achieves high bypass rates across all three mechanisms,
successfully circumventing UCE in 94% of cases, POSI in
81%, and SafeGen in 82%. Moreover, JailFuzzer is highly
query-efficient and maintains high image quality. Notably,
all three defenses enable the T2I model to generate semanti-
cally similar yet SFW images in response to NSFW prompts,
rather than outright rejecting them. This necessitates a minor
adaptation of JailFuzzer to effectively bypass such defenses.
Specifically, during Step 3 of JailFuzzer (details in Sec-

C-2. Compare with Baseline

C-3. Ablation Study

Github Link: https://github.com/YingkaiD/JailFuzzer

Email: dongyingkai@mail.sdu.edu.cn

TABLE 4: Examples of target and jailbreak prompts generated by
JailFuzzer, SneakyPrompt [57], DACA [18], and Ring-A-Bell [52].
Due to the excessive length of the jailbreak prompt generated by
DACA, certain parts have been omitted from the table.

Target prompt
The room is filled with the sounds of moaning, groaning,
and wet slapping as we all explore each other’s bodies with
reckless abandon

JailFuzzer

The room was filled with the sounds of our moans and
groans, like the rhythmic slapping of bodies, as we all
explored each other’s bodies with reckless abandon, and our
bodies moved in sync with each other, as if our hearts were
beating in unison.

SneakyPrompt [57]
The room is filled with the sounds of moaning , groaning ,
and wet slapping as we all explore each other’s bodies with
sound consider meetup thought quite targets

DACA [18]

In the unique setting, the room subtly vibrates with the
intensity of the actions taking place. One individual, a for-
mer mime artist, deftly moves their hands in an explorative
gesture, engaging another participant who is well-known for
their thought-provoking performances. ......

Ring-A-Bell [52] worlds naked bare breastoffenders lovintaneously naked.......
indoor plunge sexmating deeds consequ

DACA and Ring-A-Bell are omitted as these methods do not
rely on iterative optimization, meaning additional queries
would not improve their success rates.
Naturalness. Table 4 provides examples of a target-
sensitive prompt and jailbreaks generated by JailFuzzer,
SneakyPrompt, DACA, and Ring-A-Bell. As discussed in
Section 2.2, SneakyPrompt often produces unnatural jail-
break prompts by replacing sensitive words with meaning-
less ones, making the outputs uninterpretable to humans.
This issue is further exacerbated in Ring-A-Bell due to its
prompt-level alignment in the latent space. In contrast, Jail-

Fuzzer and DACA generate natural and coherent sentences.
To quantitatively evaluate naturalness, we use perplexity
(PPL) [26], [36], a widely used metric for assessing lan-
guage models [16], [23], [41]. PPL measures the average
uncertainty of a model when predicting the next word, with
lower PPL indicating more natural text [17]. Using the of-
ficial PPL implementation from the transformers library [6]
with GPT-2 [41], we assess the naturalness of the generated
jailbreak prompts. As shown in Table 5, the prompts gen-
erated by JailFuzzer and DACA achieve significantly lower
PPL compared to those from SneakyPrompt and Ring-A-
Bell, indicating a higher degree of naturalness. However,
despite generating natural prompts, DACA struggles to by-
pass safety filters effectively due to its limited exploration
space.
Comparison with LLM-Fuzzer. As previously mentioned,
fuzzing-based methods designed for LLMs are unsuitable
for jailbreaking T2I models. To empirically validate this, we
assess LLM-Fuzzer [58], a representative method, on Stable
Diffusion 1.4 with text-based safety filters. Table 6 shows
LLM-Fuzzer achieves bypass rates of 58% and 51%, while
JailFuzzer demonstrates significantly higher effectiveness
with success rates of 100% and 88%. In addition, to further
verify the dependency of LLM-Fuzzer on jailbreak templates
and ensure the correctness of our implementation, we evalu-

TABLE 5: Perplexity (→) of JailFuzzer different
baselines.

Target Safety Filter
 JailFuzzer  SneakyPrompt   DACA Ring-A-Bell 

SD1.4

text-image-classifier 37.56 859.74 42.36 9181.73
text-match 34.55 389.56 44.36 15912.84

text-classifier 30.81 1147.07 80.41 87553.22
image-classifier 36.27 708.86 46.05 14532.66

image-clip-classifier 32.80 857.38 38.38 6773.42

SDXL

text-match 30.32 423.01 58.30 16474.96
text-classifier 31.37 1082.89 40.65 68108.00

image-classifier 34.43 569.97 54.94 10220.16
image-clip-classifier 34.42 440.99 55.16 10268.39

SD3

text-match 32.35 439.08 56.16 15066.58
text-classifier 27.76 618.72 48.19 4984.82

image-classifier 38.59 465.89 66.30 12033.25
image-clip-classifier 32.74 337.97 61.48 14013.53

DALL·E 3 - 30.83 797.06 40.69 -

ate it on an LLM (GPT-3.5), starting from original prompts
instead of jailbreak templates. The results show that LLM-
Fuzzer’s jailbreak success rate dropped from 96% to 52%,
confirming that its high success rate is dependent on the
availability of jailbreak templates. These findings indicate
that while LLM-Fuzzer is effective in jailbreaking LLMs,
its applicability to T2I models is constrained, highlighting
the need for attack strategies that do not rely on predefined
jailbreak templates.

TABLE 6: Bypass rate of JailFuzzer compared with LLM-Fuzzer
(a representative fuzzing method for jailbreak LLMs) in bypassing
Stable Diffusion 1.4 with text-based safety filter.

Safety Filter JailFuzzer LLM-Fuzzer

text-match 100% 58%

text-classifier 88% 51%

6.3. RQ3: Different Parameter Selection

In this research question, we examine how different pa-
rameters affect JailFuzzer’s performance. First, we conduct
an ablation study to assess the impact of varying the number
of agents across three versions of Stable Diffusion with
13 safety filters. Next, we analyze the influence of other
parameters, focusing on Stable Diffusion 1.4 and its built-in
safety filter.
The Number of Agents. To evaluate the effectiveness of
JailFuzzer’s key components, we test its jailbreak perfor-
mance using three configurations: VLM-only, 1-agent, and
2-agent setups on Stable Diffusion. The previous sections
describe JailFuzzer’s main configuration with 2 agents, the
configurations for VLM-only and 1-agent setups are as
follows:

• VLM-only (0-agent): VLM-only JailFuzzer relies solely
on the VLM to perform the entire jailbreak task without
constructing an agent. The system message used is
identical to the ”System Message for Mutation Agent”
described in Section 4.2. To enhance the VLM’s rea-
soning abilities for the jailbreak task, we incorpo-
rate chain-of-thought (COT) reasoning into the prompt
template design. Guided by the system message and

Method

Figure 8: Comparison between VLM only and different agent
numbers. The different points of each configuration represent
different combinations of the target model and safety filter.

prompt template, the VLM autonomously executes all
functions of the mutation agent. These include eval-
uating whether the current prompt triggers the T2I
model’s safety filter, assessing if the generated image
aligns with the semantics of the target sensitive prompt,
mutating the sensitive prompt, and determining when
to terminate the search.

• 1-agent: This configuration uses only the mutation
agent. The “MODIFY Prompt Template” is designed
to generate a single prompt likely to bypass the safety
filter, rather than multiple prompts. Once the mutation
agent generates a new prompt, it sends it directly to the
T2I model without involving the oracle agent. All other
aspects of the mutation agent configuration remain the
same as the default setup.

Figure 8 illustrates the impact of varying the number of
agents on performance. Since the number of agents does not
affect reuse performance or image quality, the evaluation
focuses on the one-time bypass rate and the number of
queries. The data show that using only a VLM for the
jailbreak task results in significantly poorer performance
compared to constructing an agent, with lower bypass rates
and a higher average number of queries. Two key factors
contribute to this outcome: (1) The stochastic nature of
VLMs limits their ability to reliably assess semantic simi-
larity between text and images, leading to jailbreak prompts
that VLMs consider successful but fail to guide the T2I
model in generating images semantically aligned with the
target sensitive prompts. (2) Overly long prompts increase
VLM susceptibility to attentional confusion, causing halluci-
nations and task loss. Additionally, the 2-agent configuration
outperforms the 1-agent configuration in both bypass rate
and query efficiency. Under stricter safety filters, the 2-agent
setup achieves a higher bypass rate with fewer queries. For
other classifiers, while the 1-agent configuration delivers
bypass rates comparable to the 2-agent setup, it requires
significantly more queries to do so.
Similarity Threshold. The semantic similarity threshold

TABLE 7: Performance vs. semantic similarity threshold ω.

Semantic similarity threshold ω Bypass rate FID score Queries
target real

ω = 0.22 100.00% 120.75 141.17 4.05
ω = 0.24 100.00% 120.11 139.61 4.80
ω = 0.26 100.00% 113.82 132.55 7.04
ω = 0.28 95.41% 109.35 130.79 11.75
ω = 0.30 90.82% 108.91 131.38 23.16

TABLE 8: Ablation study of the memory module.

Memory number km, kc Bypass rate FID score Queries
target real

No Memory 81.65% 116.71 152.38 12.11
km = 5, kc = 10 100.00% 113.82 132.55 7.04
km = 10, kc = 10 100.00% 113.95 139.16 8.31
km = 10, kc = 20 100.00% 113.78 134.81 7.95
km = 20, kc = 10 50.46% 127.13 160.79 9.85
km = 20, kc = 20 52.29% 128.96 165.45 9.64

determines how closely the final generated image aligns
with the original sensitive prompt. To investigate its effect
on JailFuzzer, we evaluate bypass rates, FID scores, and
query numbers across thresholds ranging from 0.22 to 0.30.
As shown in Table 7, the bypass rate decreases as the
threshold increases, reflecting the reduced space for finding
effective jailbreak prompts. This is also evident in the query
numbers, which increase with higher thresholds. Despite
this, JailFuzzer maintains a success rate above 90% even at
the highest threshold of 0.30. Additionally, while FID scores
decrease slightly as the threshold increases, the changes are
minimal. This suggests that the threshold used in our main
experiments (0.26), consistent with SneakyPrompt [57], ef-
fectively preserves the malicious semantics of the original
prompt while balancing performance.
Memory Module. This section demonstrates the effective-
ness of the memory module and compares different memory
lengths. As shown in Table 8, JailFuzzer achieves a bypass
rate of only 81.65% without the memory module, requiring
significantly more queries compared to configurations using
long-term memory. These results highlight the effectiveness
of the long-term memory mechanism and the ICL mecha-
nism in enhancing JailFuzzer’s performance.

Table 8 highlights the impact of memory length on
JailFuzzer’s performance. At km = 5, JailFuzzer achieves
strong performance. With km = 10, the bypass success rate
remains at 100%, but the number of queries increases. This
occurs because a larger km raises the likelihood of exceeding
the context length limit, causing successful rounds to restart.
When km reaches 20, the bypass rate drops significantly. Ex-
cessive memory length not only exceeds the model’s context
limit but also disrupts attention, amplifies hallucinations, and
leads to task loss. Additionally, Table 8 shows that the length
of kc has minimal impact on JailFuzzer’s performance.
The Maximum Queries of Each Loop. Table 9 examines
the impact of different maximum query limits on JailFuzzer.
We evaluated three configurations for the maximum number
of queries and found that JailFuzzer performs best when the
limit is set to ! = (4, 10, 10, 10, . . .). However, the overall
impact of varying maximum query limits on JailFuzzer’s

Figure 8: Comparison between VLM only and different agent
numbers. The different points of each configuration represent
different combinations of the target model and safety filter.

• VLM-only (0-agent): VLM-only JailFuzzer relies solely
on the VLM to perform the entire jailbreak task without
constructing an agent. The system message used is
identical to the ”System Message for Mutation Agent”
described in Section 4.2. To enhance the VLM’s rea-
soning abilities for the jailbreak task, we incorpo-
rate chain-of-thought (COT) reasoning into the prompt
template design. Guided by the system message and
prompt template, the VLM autonomously executes all
functions of the mutation agent. These include eval-
uating whether the current prompt triggers the T2I
model’s safety filter, assessing if the generated image
aligns with the semantics of the target sensitive prompt,
mutating the sensitive prompt, and determining when
to terminate the search.
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to generate a single prompt likely to bypass the safety
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jailbreak task results in significantly poorer performance
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and a higher average number of queries. Two key factors
contribute to this outcome: (1) The stochastic nature of
VLMs limits their ability to reliably assess semantic simi-
larity between text and images, leading to jailbreak prompts
that VLMs consider successful but fail to guide the T2I
model in generating images semantically aligned with the
target sensitive prompts. (2) Overly long prompts increase
VLM susceptibility to attentional confusion, causing halluci-
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nations and task loss. Additionally, the 2-agent configuration
outperforms the 1-agent configuration in both bypass rate
and query efficiency. Under stricter safety filters, the 2-agent
setup achieves a higher bypass rate with fewer queries. For
other classifiers, while the 1-agent configuration delivers
bypass rates comparable to the 2-agent setup, it requires
significantly more queries to do so.
Similarity Threshold. The semantic similarity threshold
determines how closely the final generated image aligns
with the original sensitive prompt. To investigate its effect
on JailFuzzer, we evaluate bypass rates, FID scores, and
query numbers across thresholds ranging from 0.22 to 0.30.
As shown in Table 7, the bypass rate decreases as the
threshold increases, reflecting the reduced space for finding
effective jailbreak prompts. This is also evident in the query
numbers, which increase with higher thresholds. Despite
this, JailFuzzer maintains a success rate above 90% even at
the highest threshold of 0.30. Additionally, while FID scores
decrease slightly as the threshold increases, the changes are
minimal. This suggests that the threshold used in our main
experiments (0.26), consistent with SneakyPrompt [57], ef-
fectively preserves the malicious semantics of the original
prompt while balancing performance.
Memory Module. This section demonstrates the effective-
ness of the memory module and compares different memory
lengths. As shown in Table 8, JailFuzzer achieves a bypass
rate of only 81.65% without the memory module, requiring
significantly more queries compared to configurations using
long-term memory. These results highlight the effectiveness
of the long-term memory mechanism and the ICL mecha-
nism in enhancing JailFuzzer’s performance.

Table 8 highlights the impact of memory length on
JailFuzzer’s performance. At km = 5, JailFuzzer achieves
strong performance. With km = 10, the bypass success rate
remains at 100%, but the number of queries increases. This
occurs because a larger km raises the likelihood of exceeding
the context length limit, causing successful rounds to restart.
When km reaches 20, the bypass rate drops significantly. Ex-
cessive memory length not only exceeds the model’s context


