

Detecting Adversarial Data Using Perturbation Forgery

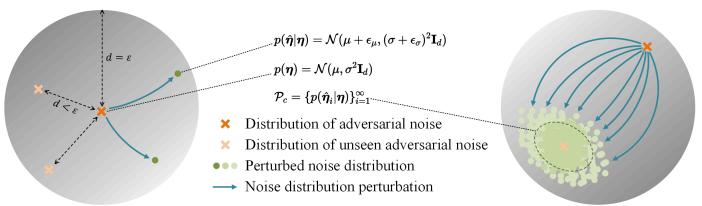
Qian Wang, Chen Li, Yuchen Luo, Hefei Ling, Shijuan Huang, Ruoxi Jia, Ning Yu

Introduction

- We explore the proximity among adversarial noise distributions and demonstrate the existence of an open covering.
- Training on this open covering enables the development of a detector that generalizes well to unseen attacks.
- The detector introduces minimal inference-time overhead.

Methods	Detect Attacks	Model-Agnostic	Unseen-Attack Detection AUC	Time Overhead
LID	Gradient	×	0.9146	1.80s
LiBRe	Gradient	×	0.8725	2.56s
SPAD	Gradient + GAN	\checkmark	0.9820	4.56s
EPSAD	Gradient	✓	0.9918	396.81s
Ours	Gradient + GAN + Diffusion	✓	0.9931	4.85

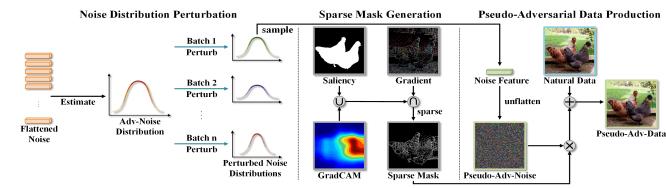
Proximity of Adversarial Noise Distribution



Left: All adversarial noise distributions and their perturbations reside within an ε -ball centered at a given adversarial noise distribution.

Right: An open covering of adversarial noise distributions is obtained through continuous perturbations of the given distribution.

Perturbation Forgery



- 1. Estimate the noise distribution induced by a commonly used attack before training.
- Continuously perturb it across batches to form an open covering.
- 3. Convert sampled noise into localized noise by applying sparse masks.
- I. Generated pseudo-adversarial data by adding localized noise to natural samples.

Detection

Detecting Gradient-based Adversarial Attack:

Detector	BIM	PGD	DIM	MIM	NIM	AA	BPDA+EOT	MM
LID	0.9782	0.9750	0.8942	0.9146	0.8977	0.9124	0.9202	0.9227
LiBRe	0.9259	0.9548	0.9243	0.8725	0.9013	0.8653	0.8714	0.8573
SPAD	0.9846	0.9851	0.9815	0.9820	0.9823	0.9890	0.9885	0.9811
EPSAD	0.9998	0.9989	0.9923	0.9918	0.9972	0.9998	0.9985	0.9923
ours	0.9911	0.9912	0.9863	0.9931	0.9934	0.9941	0.9927	0.9944

Detecting Generative-based Adversarial Attack:

Detector	CDA	TTP	M3D	Diff-Attack	Diff-PGD
CNN-Detection	0.7051	0.6743	0.6917	0.3963	0.5260
LGrad	0.6144	0.6077	0.6068	0.5586	0.5835
Universal-Detector	0.7945	0.8170	0.8312	0.9202	0.5531
DIRE	0.8976	0.9097	0.9129	0.9097	0.9143
SPAD	0.9385	0.9064	0.8984	0.8862	0.8879
EPSAD	0.9674	0.6997	0.7265	0.4700	0.1507
ours	0.9878	0.9678	0.9364	0.9223	0.9223