

1. Problems

ROPEAN CONFERENCE

Image Attribution is the process of detecting if an image is synthetic, and if yes, which **synthesizer** generates that image.

- Attribution to model **architecture** is more challenging than to model **instance** \rightarrow require generalization to unseen training categories.
- Robustness to **noises**: perturbations during online redistribution typically distort high frequency details which would be useful for image attribution.

Motivation:

- Existing attribution datasets [5] are **non-deterministic**, lack of semantic diversity, source model's quality and levels of perturbations.
- The needs of a new benchmark for model architecture attribution instead of model instance attribution.

The Attribution88 dataset:

- **1,056,000** RGB images of size 128x128,
- **8** source classes (real + 7 GAN architectures) x **11** semantics,
- 77 GAN models have been collected or trained using LSUN real images.
- Data cleaning: removing artifacts and balancing diversity.
- Noises: **19** ImageNet-C random perturbation sources.
- Deterministic test set: semantics (6 seen + 5 unseen), perturbations (15 seen + 4 unseen).

RepMix: Representation Mixing for Robust Attribution of Synthesized Images Tu Bui^{*1}, Ning Yu² and John Collomosse^{1,3} ¹University of Surrey, ²Salesforce, ³Adobe Research, *t.v.bui@surrey.ac.uk

RepMix Architecture:

 $\boldsymbol{f}(x_i, x_j, \alpha) = \boldsymbol{f}_t(\alpha \boldsymbol{f}_b(x_i) + (1 - \alpha) \boldsymbol{f}_b(x_j))$

where f_t and f_b are top and bottom layers; α is drawn randomly from Beta distribution; x_i and x_j are 2 input images.

- Mix random image features of different semantics and sources (GANs or real)
- Predict the source mixture ratio.
- Mixing at top fully connected layer gives the best performance.

Compound loss:

- Account for the hierarchical nature of attribution: image \rightarrow real or fake (synthesised) \rightarrow generator sources,
- Consist of real/fake detection loss and attribution loss,
- Detection (real/fake) scores factor in attribution scores,
- Weighted cross-entropy losses.

Contribution of different design components

	Detection Acc. \Uparrow	Attribution Acc. \Uparrow	Attribution NMI \Uparrow
All (ResNet backbone)	0.9426	0.7400	0.5546
w/o compound loss	0.9364	0.7204	0.5280
w/o RepMix	0.9296	0.7188	0.5205
w/o RepMix+Compound loss	0.9283	0.7129	0.5167
w/o Augmentation	0.7044	0.2762	0.0856
VGG16	0.9493	0.7150	0.5315
AlexNet	0.8818	0.5280	0.2817

5. References

[1] Asnani, Vishal, et al. "Reverse engineering of generative models: Inferring model hyperparameters from generated images." arXiv preprint arXiv:2106.07873 (2021).

[2] Frank, Joel, et al. "Leveraging frequency analysis for deep fake image recognition" Proc. ICLR, 2020.

[3] Marra, Francesco, et al. "Do gans leave artificial fingerprints?." Proc. IEEE MIPR, 2019.

[4] Sirovich, Lawrence, and Michael Kirby. "Low-dimensional procedure for the characterization of human faces." Josa a 4.3 (1987): 519-524.

[5] Yu, Ning, Larry S. Davis, and Mario Fritz. "Attributing fake images to gans: Learning and analyzing gan fingerprints." Proc. ICCV, 2019.

Baseline Comparison

	1 Sem., Clean			Attribution88			
	Det. Acc. \Uparrow	Attr. Acc. \Uparrow	Attr. NMI \Uparrow	Det. Acc. \Uparrow	Attr. Acc. \Uparrow	Attr. NMI \Uparrow	
RepMix	1.0000	0.9994	0.9975	0.9745	0.8207	0.6679	
Yu et al. (reimp.)	0.9910	0.9838	0.9458	0.9306	0.6784	0.4666	
Yu <i>et al</i> . [5]	0.9888	0.9844	0.9455	0.9190	0.6322	0.4028	
DCT-CNN $[2]$	0.9922	0.9838	0.9526	0.9001	0.6447	0.4061	
Reverse Eng. [1]	0.9976	0.9960	0.9834	0.8665	0.5637	0.3653	
EigenFace [4]	0.8262	0.6538	0.4515	0.7829	0.1515	0.0034	
PRNU [3]	0.8544	0.8482	0.7389	0.7845	0.1252	0.0003	

Robustness to Perturbation

† indicates unseen transformations.

Robustness to Semantics

Number of semantics in the test set is fixed at 11s.

Robustness to Adversarial Attacks

Table 2: Adversarial attacks at different levels of max perturbation ϵ

20.010				10,010 01 110	- por our saure	
Error \Downarrow	$\epsilon=2/255$	$\epsilon = 4/255$	$\epsilon=8/255$	$\epsilon = 16/255$	$\epsilon=24/255$	$\epsilon=32/255$
RepMix	0.1509	0.1952	0.2454	0.3008	0.3333	0.3572
Yu <i>et al</i> . [5]	0.2113	0.2709	0.3328	0.3945	0.4303	0.4534
DCT-CNN [2]	0.1545	0.2190	0.2831	0.3375	0.3642	0.3812

4. Experiments

Table 1: Performance of RepMix and other baselines on a control set and Attribution88 test set