SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in Fine-tuned Source Code Models

Hossein Hajipour¹, Ning Yu², Cristian-Alexandru Staicu¹, Mario Fritz¹

¹CISPA Helmholtz Center for Information Security, ²Netflix Eyeline Studios

Introduction	Contributions				
Generative models suffer from finite size of data.	 We propose a systematic approach to simulate various OOD 				
 Programs have complex compositional nature. 	scenarios by masking out sub-regions of source code distribution along the length, syntax, and semantics dimensions.				
 Given a complex enough grammar we can have infinite number of potential programs. 	 We find that the performance of the fine-tuned models can significantly deteriorate in various OOD scenarios despite the model 				
• Despite having access to the large code datasets to pre-train these	encountering similar examples during the pre-training phase.				
models, it remains challenging in practice to fully cover the code distribution , specifically in fine-tuning datasets .	 Our systematic analysis shows that, while full fine-tuning and LoRA fine-tuning perform comparably on in-distribution code data, LoRA 				
 It is crucial to analyze the behavior of these models in different scenarios 	fine-tuning demonstrates significantly better performance on OOD data.				

• Beyond the traditional train/test splits.

SimSCOOD: <u>Sim</u>ulation of <u>Source Code Out-of-Distribution Scenarios</u>

- I. Original code distribution along a dimension.
- II. OOD simulation by masking out a sub-region.
- III. Model fine-tuning.
- IV. Evaluation on OOD data.

Out-of-distribution scenarios

- To simulate **length-based** scenarios, we use the histogram of program token sizes to represent the distribution of a given dataset.
- We use the **histogram of language elements** to model the **syntax** distribution of a given source code dataset.
- We employ a **pretrained model** to cluster programs within the continuous space and simulate the **semantic-based scenarios**.

Experiments

Tasks:Text-to-CodeCode refinement	 Models: GraphCodeBERT [1] CodeT5 [2], CodeT5+ [3] Code Llama [4] 	 Fine-tuning: Full fine-tuning LoRA fine-tuning [5] 	•		
How Do Fine-tuned Models Generalize?					
 Overall results of the model performance for different scenarios 					

How fine-tuned models perform on the full dataset?

• **Exact match** results of the fine-tuned models using the full fine-tuning dataset.

Models	Text-te	o-Code	Refinement		
	FT	LoRA	FT	LoRA	
GCBERT	-	-	10.74	11.38	
CodeT5	22.15	21.65	14.43	14.53	
CodeT5+	24.95	24.70	15.18	15.29	
Code Llama	-	27.65	-	19.19	

Can fine-tuned LLMs generate unseen language elements?

in **text-to-code** task.

- The results provide the **relative exact match to the 100%** baseline for different **OOD** and **few-data** regime scenarios.
- FT denotes full fine-tuning, and LoRA refers to the LoRA fine-tuning method.

Models		Length Inter		Length Extra		Syntax		Semantic	
CodeT5	OOD Few	FT 53.92% 86.56%	LoRA 66.91% 103.79%	FT 0.00% 28.56%	LoRA 24.99% 55.0%	FT 16.46% 93.90%	LoRA 34.81% 100.0%	FT 31.90% 37.56%	LoRA 51.42% 72.43%
CodeT5+	OOD Few	49.65% 76.40%	70.94% 96.36%	5.0% 77.38%	26.09% 101.72%	47.95% 67.21%	68.97% 78.54%	39.69% 66.04%	55.71% 83.68%
Code Llama	OOD Few	-	71.75% 94.08%	-	23.57% 63.21%	-	64.81% 86.08%	-	56.72% 84.74%

Key Findings

- Performance of fine-tuned models, can significantly deteriorate in OOD scenarios, even when the models have seen similar code samples during pre-training.
- While full fine-tuning and LoRA fine-tuning methods show comparable results over in-distribution data, LoRA fine-tuning significantly outperforms full fine-tuning in OOD scenarios.
- By incorporating a small amount of relevant data into the fine-tuning set, models can achieve substantial performance enhancements.

References

Guo, Daya, et al. "Graphcodebert: Pre-training code representations with data flow." ICLR 21.
 Wang, Yue, et al. "Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation." EMNLP 21.
 Wang, Yue, et al. "Codet5+: Open code large language models for code understanding and generation." EMNLP 23.
 Roziere, Baptiste, et al. "Code llama: Open foundation models for code." arXiv 23.
 Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." ICLR 22.