
SimSCOOD: Systematic Analysis of
Out-of-Distribution Generalization
in Fine-tuned Source Code Models
Hossein Hajipour1, Ning Yu2, Cristian-Alexandru Staicu1, Mario Fritz 1
1CISPA Helmholtz Center for Information Security, 2Netflix Eyeline Studios

Introduction
● Generative models suffer from finite size of data.

● Programs have complex compositional nature.

○ Given a complex enough grammar we can have infinite number
of potential programs.

● Despite having access to the large code datasets to pre-train these
models, it remains challenging in practice to fully cover the code
distribution, specifically in fine-tuning datasets.

● It is crucial to analyze the behavior of these models in different
scenarios

○ Beyond the traditional train/test splits.

Contributions
● We propose a systematic approach to simulate various OOD

scenarios by masking out sub-regions of source code distribution
along the length, syntax, and semantics dimensions.

● We find that the performance of the fine-tuned models can
significantly deteriorate in various OOD scenarios despite the model
encountering similar examples during the pre-training phase.

● Our systematic analysis shows that, while full fine-tuning and LoRA
fine-tuning perform comparably on in-distribution code data, LoRA
fine-tuning demonstrates significantly better performance on OOD
data.

SimSCOOD: Simulation of Source Code Out-of-Distribution Scenarios

Out-of-distribution scenarios

I. Original code distribution along a dimension.

II. OOD simulation by masking out a sub-region.

III. Model fine-tuning.

IV. Evaluation on OOD data.

Overview of SimSCOOD

● To simulate length-based scenarios, we use the histogram of program token sizes to
represent the distribution of a given dataset.

● We use the histogram of language elements to model the syntax distribution of a
given source code dataset.

● We employ a pretrained model to cluster programs within the continuous space
and simulate the semantic-based scenarios.

Experiments

Tasks:
● Text-to-Code
● Code refinement

Setup

Models:
● GraphCodeBERT [1]
● CodeT5 [2], CodeT5+ [3]
● Code Llama [4]

Fine-tuning:
● Full fine-tuning
● LoRA fine-tuning [5]

How Do Fine-tuned Models Generalize?
● Overall results of the model performance for different scenarios

in text-to-code task.

○ The results provide the relative exact match to the 100%
baseline for different OOD and few-data regime scenarios.

○ FT denotes full fine-tuning, and LoRA refers to the LoRA
fine-tuning method.

Key Findings
● Performance of fine-tuned models, can significantly deteriorate in OOD

scenarios, even when the models have seen similar code samples during

pre-training.

● While full fine-tuning and LoRA fine-tuning methods show comparable
results over in-distribution data, LoRA fine-tuning significantly
outperforms full fine-tuning in OOD scenarios.

● By incorporating a small amount of relevant data into the fine-tuning set,
models can achieve substantial performance enhancements.

How fine-tuned models
perform on the full dataset?
● Exact match results of the

fine-tuned models using the full
fine-tuning dataset.

Can fine-tuned LLMs generate
unseen language elements?

[1] Guo, Daya, et al. “Graphcodebert: Pre-training code representations with data flow.” ICLR 21.
[2] Wang, Yue, et al. “Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation.” EMNLP 21.
[3] Wang, Yue, et al. “Codet5+: Open code large language models for code understanding and generation.” EMNLP 23.
[4] Roziere, Baptiste, et al. “Code llama: Open foundation models for code.” arXiv 23.
[5] Hu, Edward J., et al. “Lora: Low-rank adaptation of large language models.” ICLR 22.

References

