ULIP-2: Towards Scalable Multimodal Pre-training for 3D Understanding Le Xue¹, Ning Yu¹, Shu Zhang¹, Artemis Panagopoulou^{1,3}, Junnan Li¹, Roberto Martín-Martín⁴, Jiajun Wu², Caiming Xiong¹, Ran Xu¹, Juan Carlos Niebles^{1,2}, Silvio Savarese^{1,2}

¹Salesforce Al Research ²Stanford University ³University of Pennsylvania

Introduction:

- Recent works like ULIP have shown promising 3D representation learning by aligning features from 3D, 2D counterparts, and language.
- However, existing methods often lack scalability and fail to deliver comprehensive language descriptions.
- We introduce ULIP-2, which utilizes LMMs to automatically produce holistic textual descriptions from only 3D data, eliminating manual annotations.

classification

• Besides better scalability, ULIP-2 also sets new SOTA on various downstream tasks.

Holistic Images Large Multimodal Mode Two Large-scale Tri-modal Rank by CLIP Describe **Datasets are Released:** "a statue holding a book and a scepter" "a statue of a figure with a crown, and a ULIP-Objaverse Triplets sword on a table", "a small stone statue with a book and • ULIP-ShapeNet Triplets writing tool" Text Geeeo Encoder Pre-aligned Modality ULIP-Objaverse ULIP-ShapeNet Point Clouds $\sim 800 \mathrm{k}$ $\sim 52.5k$ ~ 10 million \sim 3 million Images ~ 100 million ~ 30 million Language **Downstream Tasks** Zero-shot 3D **3D** classification

Proposed Approach:

- In ULIP-2, only 3D shape data is required.
- We extract 3D point clouds from the surface.
- Then render images from various viewing angles.
- We then leverage BLIP-2 to generate holistic texts for each rendering.
- For each image, we generate 10 sentences, rank using CLIP, and aggregate the top-1 descriptions to form a holistic language modality.
- We scale both the tri-modal datasets and the encoders (3D and CLIP) for pre-training.

Illustration of our scalable tri-modal dataset creation framework.

with fine-tuning

3D captioning

⁴University of Texas at Austin

Experiments:

Zero-Shot 3D Classification

Model	Pre-train	Pre-train	Manual Objaverse-LVIS		ModelNet40		
	dataset	method	captions?	top-1	top-5	top-1	top-5
PointCLIP [58]	_	_	_	1.9	5.8	19.3	34.8
PointCLIPv2 [62]	_	_	—	4.7	12.9	63.6	85.0
ReCon [34]	ShapeNet	ReCon [34]	\checkmark	1.1	3.7	61.2	78.1
CLIP2Point [11]	ShapeNet	CLIP2Point [11]	×	2.7	7.9	49.5	81.2
Point-BERT [55]	ShapeNet	OpenShape [22]	\checkmark	10.8	25.0	70.3	91.3
Point-BERT [55]	Objaverse(no LVIS) + ShapeNet	OpenShape [22]	\checkmark	38.8	68.8	83.9	97.6
Point-BERT [55]	Objaverse + ShapeNet	OpenShape [22]	\checkmark	46.5	76.3	82.6	96.9
Point-BERT [55]	Objaverse + ShapeNet + (2 extra)	OpenShape [22]	\checkmark	46.8	77.0	84.4	98.0
	ShapeNet	ULIP [52]	\checkmark	2.6	8.1	60.4	84.0
Point-BERT [55]		ULIP-2	×	16.4	34.3	75.2	95.0
	Objaverse(no LVIS) + ShapeNet	ULIP [52]	\checkmark	21.4	41.9	68.6	86.4
		ULIP-2	×	46.3	75.0	84.0	97.2
	Objaverse + ShapeNet	ULIP [52]	\checkmark	34.9	61.0	69.6	85.9
		ULIP-2	×	50.6	79.1	84.7	97.1

Finetune for 3D Classification on ScanObjectNN

Model PointNeXt (from scratch) PointNeXt (w/ ULIP-2)

3D-to-Language Generation

Multimodal generation framew

X-InstructBLIP

X-InstructBLIP

- **Pre-trained models**
- **Pre-train datasets**

Params(M)	Overall Acc	Class-mean Acc
1.4	87.5	85.9
1.4	91.5 († 4.0)	90.9 (↑ 5.0)

vork	Frozen 3D encoder	CIDEr score
	PB w/ULIP	132.2
	PB w/ULIP-2	160.5 (↑ 28.3)

Our Github repo includes:

