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1. Photographic Defect Severity Dataset
1.1. User Interface

Figure 1 left and bottom show an example of our Ama-
zon Mechanical Turk (AMT) user interface. Figure 1 top
right reports the corresponding severity ground truth for
each of the seven defects averaged from five users.

1.2. Quality Control Schemes

In order to obtain the highest possible accuracy from
AMT users, we incorporated two quality control mecha-
nisms into the study.

Instruction. We showed users in AMT an instruction
Web page with definitions (e.g. definition of “Exposure”)
and none / mild / severe examples for each defect (see Fig-
ure 2).

Qualification test. We additionally required users to pass
a qualification test in AMT with 11 multiple-choice ques-
tions and 13 points in total (see Figure 3). The questions in
the test are educational with obvious answers. Only users
who passed the test with 11 points or higher can proceed to
the real annotating tasks in AMT.

2. Simultaneous Detection of Multiple Defects
2.1. Defect-Specific Infogain Matrix Design

The infogain loss E is mathematically formulated as

E = − 1
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Hln,k log(pn,k), (1)

where N is the number of image samples; K is the number
of classes; ln is the class ground truth of the nth sample;
pn,k is the probability of the nth sample being classified as
the kth class, which is the output after the softmax layer
satisfying

∑K
k pn,k = 1 and pn,k ≥ 0. Finally, Hln,k is the

infogain weight for the nth sample with ground truth ln to
be classified to class k. The higher the weight, the greater
the reward for that classification result.

Our design for the defect-specific infogain matrix H =
{Hln,k} is as follows. For a certain defect, suppose H is
known and fixed, ∀n ∈ {1, ..., N} and j ∈ {1, ...,K − 1},
the optimal solution for p∗n,j satisfies
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One obvious solution of Equation (2) is

p∗n,j =
Hln,j∑K
k=1Hln,k

,∀j ∈ {1, ...,K}. (3)

Since we have sufficient freedom to design H , we can
set
∑K

k=1Hln,k = 1 without loss of generality. If we make
this assumption along with Equation (3), then we can de-
rive that p∗n,j = Hln,j , which indicates that the design of
H guides the optimal prediction p∗. This inspires us to de-
sign H so as to estimate the real distribution of pi,j , the
real probability to classify a sample to the jth class which
actually belongs to the ith class as ground truth. We thus
calculate the real probability by counting individual AMT
users’ discrete annotations on defect severity. For a certain
defect,
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where xk represents each of the five users’ annotations,
X represents the score set {−1.0,−0.5, 0.0, 0.5, 1.0} for
over/under saturation and {0.0, 0.5, 1.0} for the other de-
fects. Function c(·) maps from class label to the center de-
fect severity score for the class. The last equation holds
based on a Naive Bayes assumption that all users’ annota-
tions are independent of each other given the ground truth.
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Figure 1. Top left and bottom: One example of our user interface in AMT to collect users’ annotations. Top right: for each defect (from left
to right: bad exposure, bad white balance, over/under saturation, noise, haze, undesired blur, bad composition), we report the weighted
average severity ground truth. Higher numbers indicate more severe defects.

which can be directly counted by the frequency from in-
dividual users’ case-by-case annotations. Based on Equa-
tion 4, Figure 4 visualizes our design of infogain matrix H
for each defect.

2.2. Data Augmentation

In general, given a defect severity ground-truth his-
togram, we attempt to make the final histogram more uni-
formly distributed after augmentation. We augment sam-
ples in inverse proportion to class member counts but clap
the minimal number as 5 and the maximal number as 50.
The minimal number ensures the representativeness of each
sampling while the maximal number avoids heavy overlap-
ping.

For the holistic input, each sample is a holistic image
with half of the original height and width randomly cropped
at the original resolution, which is then warped and down-
sized to 224 × 224 × 3. For the patch input, each sample
is a 224 × 224 × 3 local patch randomly cropped at the
original resolution. Additional augmentation by horizontal
flipping follows after sampling. We consistently assign all
augmented samples with the same severity ground truth as
the original image.

Note that there is no augmentation sampling for the bad
composition defect because image composition is sensitive
to the cropping operation.

Figure 5 shows the severity distributions before and after
augmentation for each defect. We conclude that our data

augmentation has a beneficial rebalancing effect.

3. Experiments

3.1. Evaluation on Synthetic Data

We briefly explain how we generated each synthetic de-
fect. For the exposure defect, we multiplied the intensity
by 11 gains. The under-exposure gains have logarithm uni-
formly spaced in the range [−1.0, 0.0], while over-exposure
gains have logarithm uniformly spaced in [0.0, 1.0]. For the
saturation defect, we scaled the difference between the color
and greyscale image by 21 gains with logarithm uniformly
spaced in [−1.0, 1.0]. For the noise defect, we added white
Gaussian noise: 11 Gaussian σ values are uniformly spaced
in [1/255, 22/255]. For the motion blur defect, we con-
volve with 11 diagonal blur kernels formed by normaliz-
ing the first 11 identity matrices. Each synthetic adjustment
is applied to between 420 and 940 testing images labeled
as defect-free (the absolute value of severity ground truth
smaller than 0.05).

3.2. More Detection Results

Figure 6 and 7 visualize more examples of our testing
images, the relative rankings of severity ground truth, and
the relative rankings of our predictions.



Figure 2. Our instruction Web page that educates AMT users with
definitions from Wikipedia and examples for each defect.

Figure 3. Our educational questions in the qualification test.

3.3. More Localization Results

Figure 8-13 demonstrate more examples of the spatial
score maps for different defects.



Figure 4. Visualization for our defect-specific infogain matrices. From top left to bottom right: bad exposure, bad white balance, over/under
saturation, noise, haze, undesired blur, and bad composition. Each row in a matrix corresponds to a class ground truth, and each column
corresponds to a classifier prediction. Note that the matrices are asymmetric. The first and last rows represent all users being in agreement
that the ground truth is defect-free, or severely defective, respectively. The energy in the first and last rows can be interpreted as strongly
encouraging the classifier to perform the same as humans when all humans are in agreement.

Figure 5. A pair of severity distributions before (left) and after (right) data augmentation for each defect.



Figure 6. Our defect detection results. For each defect in a bar plot (from left to right: bad exposure, bad white balance, over/under
saturation, noise, haze, undesired blur, bad composition), we report the relative ranking of a severity score in percentage, which measures
the defect severity of a given image compared to all the other photos in a testing set. Higher numbers indicate more severe defects. Our
prediction rankings (blue) are consistent with the human judgment (green).



Figure 7. Our defect detection results. For each defect in a bar plot (from left to right: bad exposure, bad white balance, over/under
saturation, noise, haze, undesired blur, bad composition), we report the relative ranking of a severity score in percentage, which measures
the defect severity of a given image compared to all the other photos in a testing set. Higher numbers indicate more severe defects. Our
prediction rankings (blue) are consistent with the human judgment (green).

Figure 8. Examples of bad exposure defect localization, where the amount of red color indicates the severity of defects in a local region.



Figure 9. Examples of bad white balance defect localization, where the amount of red color indicates the severity of defects in a local
region.

Figure 10. Examples of over/under saturation defect localization, where the amount of red/blue color indicates the severity of over/under-
saturation defects in a local region.

Figure 11. Examples of noise defect localization, where the amount of red color indicates the severity of defects in a local region.

Figure 12. Examples of haze defect localization, where the amount of red color indicates the severity of defects in a local region.

Figure 13. Examples of undesired blur defect localization, where the amount of red color indicates the severity of defects in a local region.
This pair shows our model has the ability to differentiate between undesired blur and desired depth-of-field effect.


